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Context and motivations

Context
Wilkins model [Wilkins (MCP, 1964)] is widely used for elastic-plastic flows
Recent cell-centered discretizations have been proposed [Maire et al. (JCP,
2012)] and [Sambasivan et al. (JCP, 2013)]

Construction of cell-centered schemes relies on
Geometric conservation law
Total energy conservation
Entropy inequality

Three main issues with the Wilkins model [Plohr (LAUR05 5471, 2005)]
Lack of thermodynamic consistency
Choice of an objective stress rate to ensure frame indifference
Non conservative form of the constitutive equation for stress tensor

Motivations
Description of the theoretical weaknesses of the Wilkins model
Presentation of an alternative hyperelasticity-based Lagrangian approach
Connection with the Wilkins model by means of a linearization procedure
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Wilkins model [Wilkins (MCP, 1964)]

Elastic flow written in updated Lagrangian form

ρ
d
dt

(
1
ρ

)−∇ · V = 0, volume conservation

ρ
dV
dt

+∇p −∇ · T0 = 0, momentum conservation

ρ
dE
dt

+∇ · (pV )−∇ · (T0V ) = 0, total energy conservation

T = T0 − pId is the Cauchy stress tensor, which is symmetric.

Constitutive laws
Equation of state: p = p(ρ,e), where e is the specific internal energy
Decomposition of the velocity gradient: ∇V = D + W, where D = Dt is
the strain rate and Wt = −W is the rotation rate
Frame invariant rate form of the Hooke’s law for T0 (deviatoric stress)

d
dt

T0 + T0W−WT0 = 2µD0, Jaumann rate.

Here, D0 = D− 1
3 tr(D)Id is the deviatoric strain rate.
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Frame-indifference [Gurtin (Cambridge, 2010)]

Principle of frame-indifference
Constitutive equations must be invariant under changes of frame

Change of frame
x 7→ x? = Q(t)x + y(t),

where y is a spatial point and Q a rotation, i.e., QQt = Id and det Q = 1.

Frame-indifferent fields
Scalars are invariant and vectors transform as g? = Qg
Second-order tensors transform as G? = QGQt

Transformation rules for kinematic fields
Velocity V ? = QV + d

dt Qx + dy
dt

Velocity gradient (∇V )? = Q(∇V )Qt + dQ
dt Qt

Rotation rate of the new frame Φ = dQ
dt Qt with Φt = −Φ

Strain rate tensor D? = QDQt is frame-indifferent
Rotation rate tensor W? = QWQt + Φ is not frame-indifferent
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Frame-indifference [Gurtin (Cambridge, 2010)]

Fundamental requirement
Constitutive equations, when expressed in rate form require a
frame-indifferent or objective rate

Frame-indifferent rate
Let G be a frame-indifferent tensor G? = QGQt

Its material derivative is not frame-indifferent
dG?

dt
= Q

dG
dt

Q + ΦG? −G?Φ, where Φ =
dQ
dt

Qt .

Recalling that Φ = W? −QWQt leads to
dG?

dt
+ G?W−WG? = Q(

dG
dt

+ GW−WG)Qt

The Jaumann rate,
O

G= dG
dt + GW−WG, is frame-indifferent

Other frame-indifferent rates may be derived by adding f (D,G), for

instance, the Oldroyd rate,
�

G= dG
dt − (∇V )G− (∇V )tG, is also

frame-indifferent
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Thermodynamic consistency [Gavrilyuk, JCP 2008]

Internal energy balance

Total energy writes E = e + ee + 1
2 V 2

Elastic energy is given by ee = 1
4µρ (T0 : T0), where G : H = tr(GtH)

Subtracting kinetic energy equation to total energy equation leads to

ρ
d
dt

(e + ee) + p tr(D)− T0 : D = 0.

Entropy balance
Substituting the constitutive law into the above equation yields

ρ
d
dt

e + pρ
d
dt

(
1
ρ

) =
(T0 : T0)

4µ2ρ

d
dt

(µρ).

Time rate of change of entropy writes

ρθ
dη
dt

=
(T0 : T0)

4µ2ρ

d
dt

(µρ).

Wilkins model does not preserve entropy for smooth elastic flows.
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Kinematics of deformations [Gurtin, 2010]

Motion of a continuum body B
Let Ω be the reference configuration of B and X ∈ B a material position
The motion Φt : Ω −→ R3 is the smooth time-dependent map of Ω

X 7→ x = Φt (X ), x is the spatial position of X at time t

The deformation gradient is F = ∇XΦt = ∂x
∂X and J = det F > 0

ω(t) = Φt (Ω) is the deformed configuration at time t
The velocity field is given by V = ∂Φt

∂t

Geometric properties of the deformation gradient
The deformation of an infinitesimal fiber is characterized by dx = FdX
The polar decomposition theorem shows that F = RU = VR, where R
is a rotation and U, V are symmetric positive definite tensors
Deformation measures which vanish when F is a rotation
| dx |2 − | dX |2= (C− Id )dX · dX , C = FtF, right Cauchy Green tensor

| dx |2 − | dX |2= (Id − B−1)dx · dx , B = FFt , left Cauchy Green tensor
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From spatial to material representation

Material and spatial configurations

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

dv

x = Φt(X)

Ω ω = Φt(Ω)

dV

X

dS

N

ds
n

Transformation formulas

For volume element

dv = J dV

For surface element

nds = JF−tN dS, Nanson formula

Divergence operator transformation
Employing divergence theorem and Nanson formula leads to

∇x · T = J−1∇X · (JTF−t )

Piola compatibility condition
The above formula for T = Id leads to the Piola condition

∇X · (JF−t ) = 0
Geometrical interpretation:

∫
∂ω(t) n ds =

∫
∂Ω

JF−tN dS = 0
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Conservation laws for an isothermal solid

Spatial integral form
d
dt

∫
ω(t)

ρ dv = 0, mass conservation

d
dt

∫
ω(t)

ρV dv −
∫
∂ω(t)

Tn ds = 0, momentum conservation

T = Tt , angular momentum conservation.

Initial conditions: ρ(x ,0) = ρ0(X ) and V (x ,0) = V (X )0

Boundary conditions: Let ∂ω = ∂ωk ∪ ∂ωd

V = V ? for x ∈ ∂ωk , Tn = t? for x ∈ ∂ωd

Free energy imbalance (thermodynamic-like inequality)
The specific free energy, ψ, satisfies

d
dt

∫
ω(t)

1
2
ρV 2 + ρψ dv︸ ︷︷ ︸

kinetic + free energy

−
∫
∂ω(t)

Tn · V︸ ︷︷ ︸
external power

ds ≤ 0.
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Spatial integral form

Balance of energy
Dot-multiplying the momentum equation by V and using the tensorial identity

∇ · (TV ) = (∇ · Tt ) · V + Tt : ∇V
leads to the balance equation

d
dt

∫
ω(t)

1
2
ρV 2 dv︸ ︷︷ ︸

kinetic energy

+

∫
ω(t)

T : ∇xV︸ ︷︷ ︸
internal power

dv −
∫
∂ω(t)

Tn · V︸ ︷︷ ︸
external power

ds = 0.

Alertnative form of the free energy imbalance
Combining the free energy imbalance and the energy balance yields

ρ
d
dt
ψ − T : D ≤ 0, where D =

1
2

[∇xV + (∇xV )t ].

Constitutive law for the Cauchy stress shall be defined invoking
1 Material indifference principle
2 Thermodynamic consistency with the free energy imbalance

P.-H. Maire CEA-CESTA | Multimat 2013 San Francisco | SEPTEMBER 2-6, 2013 | PAGE 10/26



Material integral form

Conservation laws in material form
d
dt

∫
Ω

ρJ dV = 0, which under local form writes ρJ = ρ0

d
dt

∫
Ω

ρ0V dV −
∫
∂Ω

JTF−tN dS = 0, thanks to Nanson formula.

First Piola Kirchhoff stress tensor
P = JTF−t

Note that P is not symmetric and we must enforce the angular momentum
balance by imposing PFt = FPt .

Free energy imbalance
The material counterpart of the local free energy imbalance writes

ρ0 ∂ψ

∂t
− P : ∇X V ≤ 0.

We have also the integral form
d
dt

∫
Ω

ρ0(
1
2

V 2 + ψ) dV −
∫
∂Ω

PN · V dS ≤ 0.
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Material integral form

Evolution equation for F: Geometrical conservation law
The deformation gradient evolution is governed by

∂F
∂t
−∇X V = 0

This must be supplemented by the compatibility condition ∇X × F = 0 to
ensure that F derives from a motion. This condition is an involutive
constraint which implies Piola condition.

Power-conjugate pairings: Second Piola Kirchhoff stress tensor
Recalling that T : D is the stress power per unit volume in the spatial
configuration, it comes∫

ω(t)
T : D dv =

∫
Ω

P :
∂F
∂t

dV =

∫
Ω

S :
1
2
∂C
∂t

dV , where C = FtF.

Here, S = JF−1TF−t is the second Piola Kirchhoff stress tensor, which is
symmetric.
The proof relies on the fact that ∇xV = ∂F

∂t F−1 and ∂C
∂t = ∂Ft

∂t F + Ft ∂F
∂t .
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Material form

Summary of the model written under material form
Geometric conservation law

∂F
∂t
−∇X V = 0, with ∇X × F = 0.

Balance laws

ρJ = ρ0, ρ0 ∂

∂t
V −∇X · P = 0, PFt = FPt .

Free energy imbalance (dissipation inequality)

ρ0 ∂ψ

∂t
− P :

∂F
∂t
≤ 0, ρ0 ∂ψ

∂t
− 1

2
S :

∂C
∂t
≤ 0.

Here, C = FtF is the right Cauchy Green tensor, P = JTF−t is the 1st P-K
tensor and S = JFTF−t is the 2nd P-K tensor.

Constitutive law
Its remains to express the free energy and the stress in terms of a relevant deformation
measure, invoking the frame-indifference and the thermodynamic consistency.
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Constitutive theory

Elastic body
Analogy with classical mechanics where the force and the free energy within
an elastic spring depend only on the change in length of the spring. In
continuum mechanics, local length changes are characterized by the
deformation gradient F. Thus, we define an elastic body through the
constitutive equations

ψ = ψ(F) and P = P(F)

Frame-indifference requirement
Change of frame: x 7→ x? = Q(t)x + y(t), where QQt = Id and det Q = Id
Deformation gradient transforms according to F? = QF
Free energy must satisfy ψ(F) = ψ(QF) for all rotations Q
Using the polar decomposition F = RU and choose Q = R yields

ψ(F) = ψ(U) = ψ(
√

C) = ψ̃(C)

Stresses are characterized by S = S̃(C), P = FS̃(C) and T = J−1FS̃(C)Ft

Observe that C = C? is an invariant measure of deformation
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Constitutive theory

Thermodynamic restriction
Substituting ψ= eψ(C) into the free energy imbalance, ρ0 ∂ψ

∂t −
1
2 S: ∂C

∂t ≤0, and
knowing that ∂ψ

∂t = ∂ eψ
∂C : ∂C

∂t leads to

S = 2ρ0 ∂ψ̃

∂C
, i .e., Sij = 2ρ0 ∂ψ̃

∂Cij
Materials consistent with this result are termed hyperelastic.
1st P-K and Cauchy stresses are given by

P = 2ρ0F
∂ψ̃

∂C
, T = 2ρ0J−1F

∂ψ̃

∂C
Ft = 2ρF

∂ψ̃

∂C
Ft .

Consequences on the dissipation
For smooth constitutive processes the dissipation vanishes
For non-smooth constitutive processes such as shock waves we have

ρ0 ∂ψ

∂t
− P :

∂F
∂t
≤ 0,

since shock waves dissipate energy.
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Constitutive theory

Isotropic material
An isotropic body is a body whose properties are the same in all directions.
This means that the response function for the free energy is invariant for all
rotation

ψ̃(C) = ψ̃(QtCQ), for all Q such that QQt = Id and det Q = 1.

Using the polar decomposition F = RU = VR leads to RCRt = B, where
B = FFt is the left Cauchy Green tensor. Thus, setting Q = Rt in the above
equation yields

ψ̃(C) = ψ̃(B).

Alternative form of the constitutive law using B
Substituting ψ= eψ(B) into the free energy imbalance, ρ0 ∂ψ

∂t −P: ∂F
∂t ≤0 leads to the

following expression for the 1st P-K and Cauchy stress tensors

P = 2ρ0 ∂ψ̃(B)

∂B
F, T = 2ρ

∂ψ̃(B)

∂B
B.

Observe that T depends uniquely on B.
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Constitutive theory

Free energy expressed in terms of invariants
The representation theorem [Gurtin (Cambridge, 2010)] asserts that an
isotropic scalar function of a symmetric tensor B may be expressed as a
function of its principal invariants

ψ = ψ̂[I1(B), I2(B), I3(B)], where I1 = tr B, I2 =
1
2

[tr2(B)− tr(B2)], I3 = det B.

Expression of the Cauchy stress tensor in terms of invariants

The chain rule yields T = 2ρ(
∑3

i=1
∂ψ̂
∂Ii

∂Ii
∂B )B knowing that

∂I1
∂B

= Id ,
∂I2
∂B

= I1Id − B and
∂I3
∂B

= I3B−1.

Finally, the Cauchy stress tensor writes

T = 2ρ

[
I3
∂ψ̂

∂I3
Id +

(
∂ψ̂

∂I1
+ I1

∂ψ̂

∂I2

)
B− ∂ψ̂

∂I2
B2

]
.
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Isotropic elastic model in material form

Summary of the set of governing equations
Geometric conservation law for the deformation gradient

∂F
∂t
−∇X V = 0, with the involutive constraint ∇X × F = 0.

Balance laws for mass and momentum

ρJ = ρ0, ρ0 ∂

∂t
V −∇X · P = 0.

Constitutive law for the free energy and the 1st P-K stress tensor

ψ = ψ̃(B), P = 2ρ0 ∂ψ̃(B)

∂B
F, where B = FFt .

Thermodynamic-like dissipation inequality

ρ0 ∂ψ̃

∂t
− P :

∂F
∂t
≤ 0.

Cell-centered discretization of a similar model in [Kluth, (JCP 2010)]
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Isotropic elastic model in spatial form

Summary of the set of governing equations
Balance laws for mass and momentum

(since det B = J2), ρ
√

det B = ρ0, ρ
d
dt

V −∇x · T = 0.

Constitutive law for the free energy and the Cauchy stress tensor

ψ = eψ(B), T = 2ρ
∂ eψ(B)

∂B
B, where B = FFt .

Thermodynamic-like dissipation inequality

ρ
d eψ
dt
− T : D ≤ 0, where D =

1
2

[∇x V + (∇x V )t ].

Time rate of change of the left Cauchy Green tensor
Knowing that B = FF t and ∂F

∂t = (∇x V )F leads to
dB
dt
− (∇x V )B− B(∇x V )t = 0.

This is the Oldroyd rate (Lie derivative) of the left Cauchy Green tensor, which is
frame-indifferent.
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Links with the Wilkins model

Decomposition of the Cauchy stress tensor
Isochoric and volumetric factors of the deformation gradient

F̄ = J−
1
3 F (isochoric since det F̄ = 1), Fv = J

1
3 Id (volumetric).

Isochoric and volumetric factors of the left Cauchy Green tensor

B̄ = J−
2
3 B (isochoric since det B̄ = 1), Bv = J

2
3 Id (volumetric).

Additive decomposition of the free energy

ψ = ψ̄[I1(B̄), I2(B̄)] + ψv (J),

where I1(B̄) = tr B̄ and I2(B̄) = 1
2 [tr2(B̄)− tr B̄2].

Recalling that T = 2ρ∂ψ(B)
∂B B, we finally obtain T = T0 − pId

p = −ρ0 dψv

dJ
, spherical component

T0 = 2ρ
{
∂ψ̄

∂I1
B̄0 +

∂ψ̄

∂I2

[
tr(B̄)B̄0 − (B̄2)0

]}
, deviatoric component.
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Links with the Wilkins model

The Neo-Hookean model [Rivlin, 1948]
Free energy is defined by

ψ =
µ

2ρ0 (tr B̄− 3) +
κ

4ρ0

[
(J − 1)2 + log2 J

]
, where B̄ = J−

2
3 B,

where µ is the shear modulus and κ the bulk modulus.
Deviatoric Cauchy stress tensor writes

T0 = µJ−1B̄0, where B̄0 = B̄− 1
3

tr(B̄)Id .

Pressure is given by

p = −1
2
κ(J − 1 +

1
J

log J).
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Links with the Wilkins model

Governing equations for the Neo-Hookean model
Balance laws for mass and momentum

ρ
√

det B = ρ0, ρ
d
dt

V +∇xp −∇x · T0 = 0.

Constitutive law for the pressure and the deviatoric stress

T0 = µJ−1B̄0, p = −1
2
κ(J − 1 +

1
J

log J).

Thermodynamic-like dissipation inequality

ρ
dψ
dt
− T : D ≤ 0, where D =

1
2

[∇xV + (∇xV )t ].

Evolution of the deviatoric left Cauchy Green tensor

Since B̄ = J−
2
3 B, the evolution equation of B is equivalent to

dB̄
dt
− (∇xV )B̄− B̄(∇xV )t − 2

3
tr(D)B̄ = 0, and

dJ
dt
− J tr D = 0.

Here, contrary to the Wilkins model, the proper variable for time integration of the
constitutive law is the left Cauchy Green tensor.
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Links with the Wilkins model

The small elastic strain case
Let us investigate the small strain limit assuming that the motion is such that F
admits the following decomposition

F = α(Id + E)R.

Here, α > 0 characterizes the dilatational component of the motion, R is a
rotation and E is symmetric and such that | E |� 1, where | E |=

√
tr(EtE).

Employing this assumption leads to the following approximations

B ≈ α2(Id + 2E), J ≈ α3(1 + tr E), B̄ ≈ Id + 2E and B̄0 ≈ 2E0.

Limit of the left Cauchy Green tensor evolution equation
Employing the above approximations, the time rate of change of the deviatoric
left Cauchy Green tensor turns into

dE0

dt
−WE0 + E0W = D0 + D0E0 + E0D0.

We recover the Jaumann derivative of the elastic strain plus an extra term in
the right-hand side.
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Links with the Wilkins model

Order of magnitude of the extra term
Recalling that F = α(Id + E)R with | E |� 1 leads to

∇xV =
dF
dt

F−1 ≈ dα
dt
α−1 +

dE
dt

+ Φ + EΦ− ΦE, where Φ =
dR
dt

Rt .

The strain rate and the rotation rate small strain limits are given by

D ≈ dα
dt
α−1Id +

dE
dt

+ EΦ− ΦE, and W ≈ Φ.

Therefore, the deviatoric strain rate and the extra term write

D0 ≈
dE0

dt
+ E0Φ− ΦE0,

D0E0 + E0D0 ≈ 2E0
dE0

dt
+ E2

0Φ− ΦE2
0.

Limit of the left Cauchy Green tensor evolution equation
Provided that | E |� 1 and | dE0

dt |� 1 the left Cauchy Green tensor evolution
equation collapses to its Jaumann derivative.
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Links with the Wilkins model

Neo-Hookean model in the small strain limit
Balance laws for mass, Jacobian and momentum

ρJ = ρ0,
dJ
dt
− J tr D = 0, ρ

d
dt

V +∇xp −∇x · T0 = 0.

Constitutive law for the pressure and the deviatoric stress

JT0 = 2µE0, p = −1
2
κ(J − 1 +

1
J

log J).

Thermodynamic-like dissipation inequality

ρ
dψ
dt
− T : D ≤ 0, where D =

1
2

[∇xV + (∇xV )t ].

Evolution equation for the small strain
Provided that | E |� 1 and | dE0

dt |� 1

dE0

dt
−WE0 + E0W = D0.

Here, evolution is written in terms of the elastic strain.
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Conclusion and perspectives

A simple elasticity model at large deformations
The model can be expressed in both material (Lagrangian) and spatial
(Lagrangian updated) representation
It relies on hyperelastic constitutive law
The constitutive law satisfies the principle of material frame-indifference
and is thermodynamically consistent
The links with the Wilkins hypoelastic approach have been investigated
under the small strain approximation

Perspectives
Extension to thermoelasticity
Extension to plasticity based on an additive decomposition of the strain
rate [Volokh (EJM, 2013)]
Lagrangian cell-centered discretization of the Lagrangian updated
version of this model
Comparison with the Wilkins model on relevant test cases

P.-H. Maire CEA-CESTA | Multimat 2013 San Francisco | SEPTEMBER 2-6, 2013 | PAGE 26/26


	Context and motivations
	Kinematics
	Relationships between spatial and material descriptions
	Balance laws
	Constitutive theory
	Isotropic elastic model
	Links with the Wilkins model
	Conclusion and perspectives



